
8

Data Aggregation

R provides a wide array of functions to aid in aggregating data. For simple
tabulation and cross-tabulation, the table function is available. For more
complex tasks, the available functions can be broken down into two groups:
those that are designed to work effectively with arrays and/or lists, like apply,
sweep, mapply, sapply, and lapply, and those that are oriented toward data
frames (like aggregate and by). There is considerable overlap between the
two tools, and the output of one can be converted to the equivalent of the
output from another, so often the choice of an appropriate function is a matter
of personal taste.

We’ll start by looking at the table function, and then study the other
functions which can be used to aggregate data from various sources.

8.1 table

The arguments to the table function can either be individual vectors repre-
senting the levels of interest, or a list or data frame composed of such vectors.
The result from table will always be an array of as many dimensions as the
number of vectors being tabulated, with dimnames extracted from the levels of
the cross-tabulated variables. By default, table will not include missing values
in its output; to override this, use the exclude=NULL argument. When passed
a single vector of values, table returns an object of class table, which can
be treated as a named vector. For simple queries regarding individual levels
of a tabulated variable, this may be the most convenient form of displaying
and storing the values:

> pets = c(’dog’,’cat’,’duck’,’chicken’,’duck’,’cat’,’dog’)
> tt = table(pets)



102 8 Data Aggregation

> tt
pets

cat chicken dog duck
2 1 2 2

> tt[’duck’]
duck

2
> tt[’dog’]
dog
2

Alternatively, the output from table can be converted to a data frame using
as.data.frame:

> as.data.frame(tt)
pets Freq

1 cat 2
2 chicken 1
3 dog 2
4 duck 2

When multiple vectors are passed to table, an array of as many dimensions
as there are vectors is returned. For this example, the state.region and
state.x77 datasets are used, creating a table that shows the number of states
whose income is above and below the median income for all states, broken
down by region:

> hiinc = state.x77[,’Income’] > median(state.x77[,’Income’])
> stateinc = table(state.region,hiinc)
> stateinc

hiinc
state.region FALSE TRUE
Northeast 4 5
South 12 4
North Central 5 7
West 4 9

This result can be converted to a data frame using as.data.frame:

> as.data.frame(stateinc)
state.region hiinc Freq

1 Northeast FALSE 4
2 South FALSE 12
3 North Central FALSE 5
4 West FALSE 4
5 Northeast TRUE 5
6 South TRUE 4
7 North Central TRUE 7
8 West TRUE 9



8.1 table 103

When passed a data frame, table treats each column as a separate vari-
able, resulting in a table that effectively counts how often each row appears
in the data frame. This can be especially useful when the result of table
is passed to as.data.frame, since its form will be similar to the input data
frame. To illustrate, consider this small example:

> x = data.frame(a=c(1,2,2,1,2,2,1),b=c(1,2,2,1,1,2,1),
+ c=c(1,1,2,1,2,2,1))
> x
a b c

1 1 1 1
2 2 2 1
3 2 2 2
4 1 1 1
5 2 1 2
6 2 2 2
7 1 1 1
> as.data.frame(table(x))
a b c Freq

1 1 1 1 3
2 2 1 1 0
3 1 2 1 0
4 2 2 1 1
5 1 1 2 0
6 2 1 2 1
7 1 2 2 0
8 2 2 2 2

Since the data frame was formed from a table, all possible combinations,
including those with no observations, are included.

Sometimes it is helpful to display the margins of a table, that is, the sum of
each row and/or column, in order to understand differences among the levels
of the variables from which the table was formed. The addmargins function
accepts a table and returns a similar table, with the requested margins added.
To specify which dimensions should have margins added, the margin= argu-
ment accepts a vector of dimensions; a value of 1 in this vector means a new
row with the margins for the columns will be added, and a value of 2 cor-
responds to a new column containing row margins. The default operation to
create the margins is to use the sum function. If some other function is desired,
it can be specified through the FUN= argument. When a margin is added, the
dimnames for the table are adjusted to include a description of the margin.
As an example of the use of addmargins, consider the infert dataset, which
contains information about the education and parity of experimental subjects.
First, we can generate a cross-tabulation in the usual way:

> tt = table(infert$education,infert$parity)



104 8 Data Aggregation

> tt

1 2 3 4 5 6
0-5yrs 3 0 0 3 0 6
6-11yrs 42 42 21 12 3 0
12+ yrs 54 39 15 3 3 2

To add a row of margins, we can use the following call to addmargins:

> tt1 = addmargins(tt,1)
> tt1

1 2 3 4 5 6
0-5yrs 3 0 0 3 0 6
6-11yrs 42 42 21 12 3 0
12+ yrs 54 39 15 3 3 2
Sum 99 81 36 18 6 8

To add margins to both rows and columns, use a margin= argument of c(1,2):

> tt12 = addmargins(tt,c(1,2))
> tt12

1 2 3 4 5 6 Sum
0-5yrs 3 0 0 3 0 6 12
6-11yrs 42 42 21 12 3 0 120
12+ yrs 54 39 15 3 3 2 116
Sum 99 81 36 18 6 8 248

> dimnames(tt12)
[[1]]
[1] "0-5yrs" "6-11yrs" "12+ yrs" "Sum"

[[2]]
[1] "1" "2" "3" "4" "5" "6" "Sum"

Notice that the dimnames for the table have been updated.
When it’s desired to have a table of proportions instead of counts, one

strategy would be to use the sweep function (Section 8.4) dividing each row
and column by its corresponding margin. The prop.table function provides a
convenient wrapper around this operation. prop.table accepts a table, and a
margin= argument, and returns a table of proportions. With no value specified
for margin=, the sum of all the cells in the table will be 1; with margin=1, each
row of the resulting table will add to 1, and with margin=2, each column will
add to 1. Continuing with the previous example, we can convert our original
table to one containing proportions, having each column add to 1, as follows:



8.1 table 105

> prop.table(tt,2)

1 2 3 4 5 6
0-5yrs 0.03030 0.00000 0.00000 0.16667 0.00000 0.75000
6-11yrs 0.42424 0.51852 0.58333 0.66667 0.50000 0.00000
12+ yrs 0.54545 0.48148 0.41667 0.16667 0.50000 0.25000

For tables with more than two dimensions, it may be useful to present the
table in a “flattened” form using the ftable function. To illustrate, consider
the UCBAdmissions dataset, which is already a table with counts for admission
to various departments based on gender. As a three-dimensional table, it would
normally be displayed as a series of two-dimensional tables. Using ftable, the
same information can be displayed in a more compact form:

> ftable(UCBAdmissions)
Dept A B C D E F

Admit Gender
Admitted Male 512 353 120 138 53 22

Female 89 17 202 131 94 24
Rejected Male 313 207 205 279 138 351

Female 19 8 391 244 299 317

The xtabs function can produce similar results to the table function, but
uses the formula language interface. For example, the state income by region
table could be reproduced using statements like these:

> xtabs(~state.region + hiinc)
hiinc

state.region FALSE TRUE
Northeast 4 5
South 12 4
North Central 5 7
West 4 9

If a variable is given on the left-hand side of the tilde (~), it is interpreted as a
vector of counts corresponding to the values of the variables on the right-hand
side, making it very easy to convert already tabulated data into R’s notion of
a table:

> x = data.frame(a=c(1,2,2,1,2,2,1),b=c(1,2,2,1,1,2,1),
+ c=c(1,1,2,1,2,2,1))
> dfx = as.data.frame(table(x))
> xtabs(Freq ~ a + b + c,data=dfx)
, , c = 1

b
a 1 2
1 3 0
2 0 1



106 8 Data Aggregation

, , c = 2

b
a 1 2
1 0 0
2 1 2

8.2 Road Map for Aggregation

When confronted with an aggregation problem, there are three main consid-
erations:

1. How are the groups that divide the data defined?
2. What is the nature of the data to be operated on?
3. What is the desired end result?

Thinking about these issues will help to point you to the most effective solution
for your needs. The following paragraphs should help you make the best choice.

Groups defined as list elements. If the groups you’re interested in are al-
ready organized as elements of a list, then sapply or lapply (Section 8.3)
are the appropriate functions; they differ in that lapply always returns a list,
while sapply may simplify its output into a vector or array if appropriate.
This is a very flexible approach, since the entire data frame for each group
is available. Sometimes, if other methods are inappropriate, you can first use
the split function to create a suitable list for use with sapply or lapply
(Section 8.5).

Groups defined by rows or columns of a matrix. When the goal is to operate
on each column or row of a matrix, the apply function (Section 8.4) is the
logical choice. apply will usually return its results as a vector or array, but
will return a list if the results of operating on the rows or columns are of
different dimensions.

Groups based on one or more grouping variables. A wide array of choices
is available for the very common task of operating on subsets of data based on
the value of a grouping variable. If the computations you desire each involve
only a single vector and produce a single scalar as a result (like calculating
a scalar-valued statistic for a variable or set of variables), the aggregate
function (Section 8.5) is the most likely choice. Since aggregate always returns
a data frame, it is especially useful if the desired result is to create a plot or
fit a statistical model to the aggregated data.

If your computations involve a single vector, but the result is a vector
(for example, a set of quantiles or a vector of different statistics), tapply
(Section 8.5) is one available option. Unlike aggregate, tapply returns its
results in a vector or array for which individual elements are easy to access,



8.3 Mapping a Function to a Vector or List 107

but may produce a difficult-to-interpret display for complex problems. An-
other approach to the problem is provided by the reshape package, available
through CRAN, and documented in Section 8.6. It uses a formula interface,
and can produce output in a variety of forms.

When the desired result requires access to more than one variable at a time
(for example, calculating a correlation matrix, or creating a scatter plot), row
indices can be passed to tapply to extract the appropriate rows corresponding
to each group. Alternatively, the by function can be used. Unlike tapply, the
special list returned by by has a print method which will always produce an
easily-readable display of the aggregation, but accessing individual elements
of the returned list may be inconvenient. Naturally, for tasks like plotting,
there is no clear reason to choose one approach over the other.

As mentioned previously, using split and sapply/lapply is a good so-
lution if you find that other methods don’t provide the flexibility you need.
Finally, if nothing else seems to work, you can write a loop to iterate over
the values returned by unique or intersection, and perform whatever op-
erations you desire. If you take this route, make sure to consider the issues
about memory management in loops found in Section 8.7.

8.3 Mapping a Function to a Vector or List

Although most functions in R will automatically operate on each element of
a vector, the same is not true for lists. Since many R functions return lists,
it’s often useful to process each list element in the same way that R naturally
does for vectors. To handle situations like this, R provides two functions:
lapply and sapply. Each of these functions takes a list or vector as its first
argument, and a function to be applied to each element as its second argument.
The difference between the two functions is that lapply will always return its
result as a list, while sapply will simplify its output to a vector or matrix if
possible. For example, suppose we have a vector of character strings, and we
want to find out how many words are in each vector. Like most functions in R,
the strsplit function will operate on each element of a vector, returning for
each element a new vector containing the individual pieces of that element:

> text = c(’R is a free environment for statistical analysis’,
+ ’It compiles and runs on a variety of platforms’,
+ ’Visit the R home page for more information’)
> result = strsplit(text,’ ’)
> result
[[1]]
[1] "R" "is" "a"
[4] "free" "environment" "for"
[7] "statistical" "analysis"



108 8 Data Aggregation

[[2]]
[1] "It" "compiles" "and"
[4] "runs" "on" "a"
[7] "variety" "of" "platforms"

[[3]]
[1] "Visit" "the" "R"
[4] "home" "page" "for"
[7] "more" "information"

Since each vector could potentially contain different numbers of words,
strsplit puts its result into a list. The length function will not automati-
cally operate on each list element; instead, it properly reports the number of
elements in the returned list:

> length(result)
[1] 3

To find the length of the individual elements, we can use either sapply or
lapply; since the length of each element will be a scalar, sapply would be
most appropriate:

> nwords = sapply(result,length)
> nwords
[1] 8 9 8

Another important use of sapply relates to data frames. When treated as
a list, each column of a data frame retains its mode and class. Suppose we’re
working with the built-in ChickWeight data frame, and we wish to learn more
about the nature of each column. Simply using the class function on the data
frame will give information about the data frame, not the individual columns:

> class(ChickWeight)
[1] "nfnGroupedData" "nfGroupedData"
[3] "groupedData" "data.frame"

To get the same information for each variable, use sapply:

> sapply(ChickWeight,class)
$weight
[1] "numeric"

$Time
[1] "numeric"

$Chick
[1] "ordered" "factor"

$Diet
[1] "factor"



8.3 Mapping a Function to a Vector or List 109

Notice that in this case, since the class for Chick was of length 2, sapply
returned its result as a list. This will always be the case when the structure
of the data would be lost if sapply tried to simplify it into a vector or array.

This same idea can be used to extract columns of a data frame that meet
a particular condition. For example, to create a data frame containing only
numeric variables, we could use

df[,sapply(df,class) == ’numeric’]

sapply or lapply can be used as an alternative to loops for performing
repetitive tasks. When you use these functions, they take care of the details
of deciding on the appropriate form of the output, and eliminate the need to
incrementally build up a vector or matrix to store the result. To illustrate,
suppose that we wish to generate matrices of random numbers and determine
the highest correlation coefficient between any of the variables in the matrix.
The first step is to create a function that will generate a single matrix and
calculate the maximum correlation coefficient:

maxcor = function(i,n=10,m=5){
mat = matrix(rnorm(n*m),n,m)
corr = cor(mat)
diag(corr) = NA
max(corr,na.rm=TRUE)

}

Since sapply will always pass an argument to the applied function, a dummy
argument (i) is added to the function. Since the diagonal of a correlation
matrix will always be 1, the diagonal elements of the correlation matrix were
masked by assigning them values of NA. Suppose we want to generate 1000
100 × 5 matrices, and find the average value of the maximum correlation:

> maxcors = sapply(1:1000,maxcor,n=100)
> mean(maxcors)
[1] 0.1548143

Notice that additional arguments to the function being applied (like n=100 in
this case) are passed to the function by including them in the argument list
after the function name or definition.

For simpler simulations of this type, the replicate function can be used.
This function takes as its first argument the number of replications desired,
and as its second argument an expression (not a function!) that calculates
the desired statistic for the simulation. For example, we can generate a sin-
gle t-statistic from two groups of normally distributed observations with the
following expression:

> t.test(rnorm(10),rnorm(10))$statistic
t

0.2946709



110 8 Data Aggregation

Using replicate, we can generate as many of these statistics as we want:

> tsim = replicate(10000,t.test(rnorm(10),rnorm(10))$statistic)
> quantile(tsim,c(0.5,0.75,0.9,0.95,0.99))

50% 75% 90% 95% 99%
0.00882914 0.69811345 1.36578668 1.74995603 2.62827515

8.4 Mapping a function to a matrix or array

When your data has the added organization of an array, R provides a con-
venient way to operate on each dimension of the data through the apply
function. This function requires three arguments: the array on which to per-
form the operation, an index telling apply which dimension to operate on,
and the function to use. Like sapply, additional arguments to the function
can be placed at the end of the argument list. For matrices, a second argument
of 1 means “operate on the rows”, and 2 means “operate on the columns”.

One common use of apply is in conjunction with functions like scale,
which require summary statistics calculated for each column of a matrix.
Without additional arguments , the scale function will subtract the mean of
each column and divide by the standard deviation, resulting in a matrix of z-
scores. To use other statistics, appropriate vectors of values can be calculated
using apply and provided to scale using the center= and scale= arguments.
For example, by providing a vector of medians for centering, and a vector of
mean average deviations for scaling, an alternative standardization to z-scores
can be performed. Using the built-in state.x77 dataset, we could perform
such a transformation as follows:

> sstate = scale(state.x77,center=apply(state.x77,2,median),
+ scale=apply(state.x77,2,mad))

Similar to sapply, apply will try to return its results in a vector or matrix
when appropriate, making it useful in cases where several quantities need to be
calculated for each row or column of a matrix. Suppose we wish to produce a
matrix containing the number of nonmissing observations, the mean and the
standard deviation for each column of a matrix. The first step is writing a
function which will return what we want for a single column:

summfn = function(x)c(n=sum(!is.na(x)),mean=mean(x),sd=sd(x))

Now we can apply the function to a data frame with all numeric columns, or
a numeric matrix like state.x77:

> x = apply(state.x77,2,sumfun)



8.4 Mapping a function to a matrix or array 111

> t(x)
n mean sd

Population 50 4246.4200 4.464491e+03
Income 50 4435.8000 6.144699e+02
Illiteracy 50 1.1700 6.095331e-01
Life Exp 50 70.8786 1.342394e+00
Murder 50 7.3780 3.691540e+00
HS Grad 50 53.1080 8.076998e+00
Frost 50 104.4600 5.198085e+01
Area 50 70735.8800 8.532730e+04

This example illustrates another advantage of using apply instead of a loop,
namely, that apply will use names that are present in the input matrix or
data frame to properly label the result that it returns.

One further use of apply is worth mentioning. If a vector needs to be
processed in non-overlapping groups, it is sometimes easiest to temporarily
treat the vector as a matrix, and use apply to operate on the groups. For
example, suppose we wish to take the sum of every three adjacent values in
a vector. By first forming a three-column matrix, we can process the groups
conveniently using apply:

> x = 1:12
> apply(matrix(x,ncol=3,byrow=TRUE),1,sum)
[1] 6 15 24 33

The apply function is very general, and for certain applications, there may
be more efficient methods available to perform the necessary computations.
For example, if the statistic to be calculated is the sum or the mean, matrix
computations will be more efficient than calling apply with the appropriate
function. In cases like this, the rowSums, colSums, rowMeans, or functions can
be used. Each of these functions accepts a matrix (or a data frame which will
be coerced to a matrix), and an optional na.rm= argument to specify the han-
dling of missing values. Since these functions will accept logical values as input
as well as numeric values, they can be very useful for counting operations.

For example, consider the dataset USJudgeRatings, which has ratings for
43 judges in twelve categories. To get the mean rating for each category, the
colMeans function could be used as follows:

> mns = colMeans(USJudgeRatings)
> mns

CONT INTG DMNR DILG CFMG
7.437209 8.020930 7.516279 7.693023 7.479070

DECI PREP FAMI ORAL WRIT
7.565116 7.467442 7.488372 7.293023 7.383721

PHYS RTEN
7.934884 7.602326



112 8 Data Aggregation

To count the number of categories for which each judge received a score of
8 or greater, the rowSums function can be used by providing the appropriate
logical matrix:

> jscore = rowSums(USJudgeRatings >= 8)
> head(jscore)
AARONSON,L.H. ALEXANDER,J.M. ARMENTANO,A.J.

1 8 1
BERDON,R.I. BRACKEN,J.J. BURNS,E.B.

11 0 10

A common situation when processing a matrix by rows or columns is that
each row or column needs to be processed differently, based on the values of
an auxiliary vector which already exists. In cases like this, the sweep function
can be used. Like apply, the first two arguments to sweep are the matrix
to be operated on and the index of the dimension to be used for repetitive
processing. In addition, sweep takes a third argument representing the vec-
tor to be used when processing each column, and finally a fourth argument
providing the function to be used. sweep operates by building matrices which
can be operated on in a single call, so, unlike apply, only functions which can
operate on arrays of values can be passed to sweep. All of the built-in binary
operators, such as addition ("+"), subtraction ("-"), multiplication ("*"), and
division ("/") can be used, but, in general, it will be necessary to make sure
an arbitrary function will work properly with sweep. For example, suppose
we have a vector representing the maximum value found in each column of a
matrix, and we wish to divide each column of the matrix by its corresponding
maximum. Using the state.x77 data frame, we could use sweep as follows:

> maxes = apply(state.x77,2,max)
> swept = sweep(state.x77,2,maxes,"/")
> head(swept)

Population Income Illiteracy Life Exp Murder
Alabama 0.17053496 0.5738717 0.7500000 0.9381793 1.0000000
Alaska 0.01721861 1.0000000 0.5357143 0.9417120 0.7483444
Arizona 0.10434947 0.7173397 0.6428571 0.9585598 0.5165563
Arkansas 0.09953769 0.5349169 0.6785714 0.9600543 0.6688742
California 1.00000000 0.8098179 0.3928571 0.9743207 0.6821192
Colorado 0.11986980 0.7733967 0.2500000 0.9790761 0.4503311

HS Grad Frost Area
Alabama 0.6136701 0.10638298 0.08952178
Alaska 0.9910847 0.80851064 1.00000000
Arizona 0.8632987 0.07978723 0.20023057
Arkansas 0.5928678 0.34574468 0.09170562
California 0.9301634 0.10638298 0.27604549
Colorado 0.9494799 0.88297872 0.18319233



8.5 Mapping a Function Based on Groups 113

Now suppose that we wish to calculate the mean value for each variable
using only those values which are greater than the median for that variable.
We can calculate the medians using apply and then write a simple function
to find the mean of the values we’re interested in.

> meds = apply(state.x77,2,median)
> meanmed = function(var,med)mean(var[var>med])
> meanmed(state.x77[,1],meds[1])
[1] 7136.16
> meanmed(state.x77[,2],meds[2])
[1] 4917.92

Although the function works properly for individual columns, it returns only
a single value when used in conjunction with sweep:

> sweep(state.x77,2,meds,meanmed)
[1] 15569.75

The source of the problem is the inequality used to subset the variable values,
since it will not properly operate on the array that sweep produces to calculate
its results. In cases like this, the mapply function can be used. By converting
the input matrix to a data frame, each variable in the input will be processed
in parallel to the vector of medians, providing the desired result:

> mapply(meanmed,as.data.frame(state.x77),meds)
[1] 7136.160 4917.920 1.660 71.950 10.544
[6] 59.524 146.840 112213.400

By default, mapply will always simplify its results, as in the previous
case where it consolidated the results in a vector. To override this behav-
ior, and return a list with the results of applying the supplied function, use
the SIMPLIFY=FALSE argument.

8.5 Mapping a Function Based on Groups

To calculate scalar data summaries of one or more columns of a data frame or
matrix, the aggregate function can be used. Although this function is lim-
ited to returning scalar values, it can operate on multiple columns of its input
argument, making it a natural choice for data summaries for multiple vari-
ables. The first argument to aggregate is a data frame or matrix containing
the variables to be summarized, the second argument is a list containing the
variables to be used for grouping, and the third argument is the function to be
used to summarize the data. For example, the iris dataset contains the values
of four variables measured on a variety of samples from three species of irises.
To find the means of all four variables broken down by species, aggregate
can be called as follows:



114 8 Data Aggregation

> aggregate(iris[-5],iris[5],mean)
Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.006 3.428 1.462 0.246
2 versicolor 5.936 2.770 4.260 1.326
3 virginica 6.588 2.974 5.552 2.026

Since the second argument must be a list, when a data frame is being processed
it is often convenient to refer to the grouping columns using single bracket
subscripts, since columns accessed this way will naturally be in the form of a
list. In addition, with more than one grouping variable, specifying the columns
this way will insure that the grouping variables’ names will be automatically
transfered to the output data frame. If the columns are passed as manually
constructed list, aggregate will use names like Group.1 to identify the group-
ing variables, unless names are provided for the list elements.

As an example, suppose we wish to calculate the mean weight for observa-
tions in the ChickWeight data frame, broken down by the variables Time and
Diet. Specifying the grouping variables as ChickWeight[c(’Time’,’Diet’)]
will result in the grouping columns being properly labeled:

> cweights = > aggregate(ChickWeight$weight,
+ ChickWeight[c(’Time’,’Diet’)],mean)
> head(cweights)
Time Diet x

1 0 1 41.40000
2 2 1 47.25000
3 4 1 56.47368
4 6 1 66.78947
5 8 1 79.68421
6 10 1 93.05263

Alternatively, a constructed list like

list(Time=ChickWeight$Time,Diet=ChickWeight$Diet)

could be used to achieve the same result.
To process a single vector based on the values of one or more grouping

vectors, the tapply function can also be used. The returned value from tapply
will be an array with as many dimensions as there were vectors that defined
the groups. For example, the PlantGrowth dataset contains information about
the weight of plants receiving one of three different treatments. To find the
maximum weight for plants exposed to each of the treatments, we could use
tapply as follows:

> maxweight = tapply(PlantGrowth$weight,PlantGrowth$group,max)
> maxweight
ctrl trt1 trt2
6.11 6.03 6.31



8.5 Mapping a Function Based on Groups 115

Since there was only one grouping factor, the results were returned in the form
of a named vector. To convert this vector into a data frame, it can temporarily
be converted into a table using as.table, and then passed to as.data.frame,
since there is a special method for converting tables into data frames:

> as.data.frame(as.table(maxweight))
Var1 Freq

1 ctrl 6.11
2 trt1 6.03
3 trt2 6.31

To use a name other than Freq in the data frame, as.data.frame.table can
be called directly, using the responseName= argument:

> as.data.frame.table(as.table(maxweight),
responseName=’MaxWeight’)

Var1 MaxWeight
1 ctrl 6.11
2 trt1 6.03
3 trt2 6.31

Unlike aggregate, tapply is not limited to returning scalars. For example,
if we wanted the range of weights for each group in the PlantGrowth dataset,
we could use

> ranges = tapply(PlantGrowth$weight,PlantGrowth$group,range)
> ranges
$ctrl
[1] 4.17 6.11

$trt1
[1] 3.59 6.03

$trt2
[1] 4.92 6.31

In this case. tapply returns a named array of vectors. Individual elements
can be accessed in the usual way:

> ranges[[1]]
[1] 4.17 6.11
> ranges[[’trt1’]]
[1] 3.59 6.03

To convert values like this to data frames, the dimnames of the returned
object can be combined with the values. When each element of the vector is
of the same length, this operation is fairly straightforward, but the problem
becomes difficult when the return values are of different lengths. In the current
example, we can convert the values to a numeric matrix, and then form a data
frame by combining the matrix with the dimnames:



116 8 Data Aggregation

> data.frame(group=dimnames(ranges)[[1]],
+ matrix(unlist(ranges),ncol=2,byrow=TRUE))
group X1 X2

1 ctrl 4.17 6.11
2 trt1 3.59 6.03
3 trt2 4.92 6.31

data.frame was used here instead of cbind to prevent the numeric values
from being coerced to character values when they were combined with the
levels of the grouping variable.

When more than one grouping variable is used with tapply, and the return
value from the function used is not a scalar, the returned object is somewhat
more difficult to interpret. For example, the CO2 dataset contains information
about the uptake of carbon dioxide by different types of plants exposed to
different treatments. Suppose we were interested in the range of CO2 uptake
for plants of each type and treatment. We can call tapply as follows:

> ranges1 = tapply(CO2$uptake,CO2[c(’Type’,’Treatment’)],range)
> ranges1

Treatment
Type nonchilled chilled
Quebec Numeric,2 Numeric,2
Mississippi Numeric,2 Numeric,2

The returned value is a matrix of lists, which explains the unusual form of the
output when we display the object. Individual elements can still be accessed
as expected:

> ranges[[’Quebec’,’chilled’]]
[1] 9.3 42.4

Such objects can be converted to data frames by applying expand.grid
(see Section 2.8.1) to the dimnames before combining them with the values:

> data.frame(expand.grid(dimnames(ranges1)),
+ matrix(unlist(ranges1),byrow=TRUE,ncol=2))

Type Treatment X1 X2
1 Quebec nonchilled 13.6 45.5
2 Mississippi nonchilled 10.6 35.5
3 Quebec chilled 9.3 42.4
4 Mississippi chilled 7.7 22.2

The function argument to tapply is not required; calling tapply without
a function will return a vector of indices which can be used as a subscript
to the array of values that tapply produces when a function is provided.
For example, suppose we wish to subtract the median value of the uptake
variable in the CO2 data frame, where the median is calculated separately for
each Type/Treatment combination. The first step is calculating the medians
for each group using tapply:



8.5 Mapping a Function Based on Groups 117

> meds = tapply(CO2$uptake,CO2[c(’Type’,’Treatment’)],median)

Next, the indices are calculated using an identical call to tapply without a function,
and they are used as a subscript to the median vector:

> inds = tapply(CO2$uptake,CO2[c(’Type’,’Treatment’)])

> inds

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3

[31] 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[61] 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

> adj.uptake = CO2$uptake - meds[inds]

The ave function combines these two operations in a single function call:

> adj.uptake = CO2$uptake -
+ ave(CO2$uptake,CO2[c(’Type’,’Treatment’)],FUN=median)

Since ave can accept multiple grouping variables, the function to be used for
summarization must be identified using FUN=. Thus, the previous example
could have been carried out with the following statement:

> adj.uptake = CO2$uptake -
+ ave(CO2$uptake,CO2$Type,CO2$Treatment,FUN=median)

When more than a single vector needs to be processed, a variety of options
is available. To put the problem into context, consider the task of finding the
maximum eigenvalue of the correlation matrices of the four variables from the
iris dataset, broken down by the species of the plant. One solution is to use
the split function, which takes a data frame and a list of grouping variables
and returns a list containing data frames representing the observations for
each level of the grouping variables. Such a list can then be processed using
sapply or lapply to provide the final result. When working with problems
like this, the first step is usually defining a function to provide the required
result for a single data frame. In this case, an appropriate function could be
written as follows:

> maxeig = function(df)eigen(cor(df))$val[1]

Next, the numeric values in the data frame can be passed to split to provide
a list of data frames for further processing:

> frames = split(iris[-5],iris[5])

Finally, this result can be passed to sapply along with the function to do the
work:

> sapply(frames,maxeig)
setosa versicolor virginica

2.058540 2.926341 2.454737

As always, these operations can be condensed to a single expression, al-
though there is no great advantage in doing so.



118 8 Data Aggregation

> sapply(split(iris[-5],iris[5]),
+ function(df)eigen(cor(df))$val[1])

setosa versicolor virginica
2.058540 2.926341 2.454737

A less direct, but sometimes useful solution involves passing a vector of row
indices to tapply and modifying the function used to calculate the maximum
eigenvalue to operate on selected rows of the data:

> tapply(1:nrow(iris),iris[’Species’],
+ function(ind,data)eigen(cor(data[ind,-5]))$val[1],

data=iris)
Species

setosa versicolor virginica
2.058540 2.926341 2.454737

Finally, the by function can be used. This generalizes the idea of tapply
to operate on entire data frames broken down by a list of grouping variables.
Thus, the first argument to by is a data frame, and the remaining arguments
are similar to those of tapply. For the eigenvalue problem, a solution using
by is as follows:

> max.e = by(iris,iris$Species,
+ function(df)eigen(cor(df[-5]))$val[1])
> max.e
iris$Species: setosa
[1] 2.058540
------------------------------------------------------------
iris$Species: versicolor
[1] 2.926341
------------------------------------------------------------
iris$Species: virginica
[1] 2.454737

In this case, by returned a scalar, so the result can be converted to a data
frame by using a combination of as.table and as.data.frame:

> as.data.frame(as.table(max.e))
iris.Species Freq

1 setosa 2.058540
2 versicolor 2.926341
3 virginica 2.454737

When there are multiple variables describing the groups to be processed,
the result from by needs additional processing to get it in the form of a data
frame. Consider again the CO2 dataset. Suppose we wish to find the number
of observations, mean, and standard deviation of the variable uptake, broken
down by Type and Treatment combinations. First, a simple function to return
the required values is written. By putting together the values with data.frame



8.5 Mapping a Function Based on Groups 119

instead of c, we insure that the mode of the numeric results will be preserved
after we combine them with the level information for the grouping variables:

> sumfun = function(x)data.frame(n=length(x$uptake),
+ mean=mean(x$uptake),sd=sd(x$uptake))
> bb = by(CO2,CO2[c(’Type’,’Treatment’)],sumfun)
> bb
Type: Quebec
Treatment: nonchilled

n mean sd
1 21 35.33333 9.59637
------------------------------------------------------------
Type: Mississippi
Treatment: nonchilled

n mean sd
1 21 25.95238 7.402136
------------------------------------------------------------
Type: Quebec
Treatment: chilled

n mean sd
1 21 31.75238 9.644823
------------------------------------------------------------
Type: Mississippi
Treatment: chilled

n mean sd
1 21 15.81429 4.058976

Each of the rows returned by the by function is in the form that we would
like for a data frame containing these results, so it would be natural to use
rbind to convert this result to a data frame; however, it is tedious to pass
each row to the rbind function individually. In cases like this, the do.call
function, first introduced in Section 6.5, can usually generalize the operation
so that it will be carried out properly regardless of how many elements need
to be processed. Recall that do.call takes a list of arguments and passes
them to a function as if they were the argument list for the function call. In
this example, the call to do.call is as follows:

> do.call(rbind,bb)
n mean sd

1 21 35.33333 9.596371
11 21 25.95238 7.402136
12 21 31.75238 9.644823
13 21 15.81429 4.058976

With two grouping variables, the names and levels of the grouping factors
are not present in the result. This can be remedied by combining a call to



120 8 Data Aggregation

expand.grid with the previous result. Since all the parts being combined are
data frames, they can be safely combined using cbind:

> cbind(expand.grid(dimnames(bb)),do.call(rbind,bb))
Type Treatment n mean sd

1 Quebec nonchilled 21 35.33333 9.596371
2 Mississippi nonchilled 21 25.95238 7.402136
3 Quebec chilled 21 31.75238 9.644823
4 Mississippi chilled 21 15.81429 4.058976

8.6 The reshape Package

An alternative approach to aggregation is provided by the reshape pack-
age, available from CRAN. The functions in this package provide a unified
approach to aggregation, based on an extended formula notation. The core
idea behind the reshape package is to create a “melted” version of a dataset
(through the melt function), which can then be “cast” (with the cast func-
tion) into an object with the desired orientation. To melt a data frame, list,
or array into the appropriate melted form, it is first necessary to divide the
variables into id variables and measure or analysis variables; this should gen-
erally be obvious from the nature of the data. By default, melt treats factor
and integer variables as id variables, and the remaining variables as analysis
variables; if your data is structured according to this convention, no addi-
tional information needs to be provided to melt. Otherwise, the id.var= or
measure.var= arguments can be used; if you specify one, it will assume all
the other variables are of the other type. Once a dataset is melted, it can be
cast into a variety of forms.

As a simple example, consider a dataset formed from the state.x77 data
frame, combined with the state.region variable:

> states = data.frame(state.x77,state=row.names(state.x77),
+ region=state.region,row.names=1:50)

The state and region variables are stored as factors, so they will be auto-
matically recognized as id variables when we melt the data:

> library(reshape)
> mstates = melt(states)
Using state, region as id variables

Notice that melt displays the names of variables that have been automatically
assigned as id variables. The basic melting operation preserves the id vari-
ables, and converts the measured variables into two columns named variable
(which identifies which variable is being measured) and value (which contains
the actual values). You can use a name other than variable by specifying a
variable name= argument to melt.



8.6 The reshape Package 121

The left-hand side of the formula passed to cast represents the vari-
able(s) which will appear in the columns of the result, and the right-hand
side describes the variables which will appear in the rows. Formulas used by
cast can include a single dot (.) to represent an overall summary, or three
dots ... to represent all variables not otherwise included in the formula. In
the simplest case, we can reproduce the original dataset with a formula like
“... ~ variable”.

When used for aggregation, an aggregation function should be supplied;
if not it defers to using length. Suppose we wish to find the mean for each
variable, broken down by region, with the regions appearing as a column in
the output data frame:

> cast(mstates,region~variable,mean)
region Population Income Illiteracy Life.Exp

1 Northeast 5495.111 4570.222 1.000000 71.26444
2 South 4208.125 4011.938 1.737500 69.70625
3 North Central 4803.000 4611.083 0.700000 71.76667
4 West 2915.308 4702.615 1.023077 71.23462

Murder HS.Grad Frost Area
1 4.722222 53.96667 132.7778 18141.00
2 10.581250 44.34375 64.6250 54605.12
3 5.275000 54.51667 138.8333 62652.00
4 7.215385 62.00000 102.1538 134463.00

If we wanted a separate row for each variable instead of each region, we
can reverse the role of those variables in the formula:

> cast(mstates,variable~region,mean)
variable Northeast South North Central

1 Population 5495.111111 4208.12500 4803.00000
2 Income 4570.222222 4011.93750 4611.08333
3 Illiteracy 1.000000 1.73750 0.70000
4 Life.Exp 71.264444 69.70625 71.76667
5 Murder 4.722222 10.58125 5.27500
6 HS.Grad 53.966667 44.34375 54.51667
7 Frost 132.777778 64.62500 138.83333
8 Area 18141.000000 54605.12500 62652.00000

West
1 2.915308e+03
2 4.702615e+03
3 1.023077e+00
4 7.123462e+01
5 7.215385e+00
6 6.200000e+01
7 1.021538e+02
8 1.344630e+05



122 8 Data Aggregation

To limit the variables that are used, we can use the subset= argument of cast.
Since this argument uses the melted data, we need to refer to the variable
named variable:

> cast(mstates,region~variable,mean,
+ subset=variable %in% c(’Population’,’Life.Exp’))

region Population Life.Exp
1 Northeast 5495.111 71.26444
2 South 4208.125 69.70625
3 North Central 4803.000 71.76667
4 West 2915.308 71.23462

Unlike the aggregate function which does not accept functions which
return vectors of values, cast allows such functions, and uses the names of
the returned vector to form new variable names in its output. Alternatively,
a list of functions can be provided. Suppose we wish to calculate the mean,
median, and standard deviations for Population and Lif.Exp in the states
data frame. Since built-in functions exist for each statistic, they can be passed
to cast as a list: First, we can calculate these quantities for the entire dataset:

> cast(mstates,.~variable,c(mean,median,sd),
+ subset=variable %in% c(’Population’,’Life.Exp’))
value Population_mean Population_median Population_sd

1 (all) 4246.42 2838.5 4464.491
Life.Exp_mean Life.Exp_median Life.Exp_sd

1 70.8786 70.675 1.342394

Since variable was specified on the right-hand side of the tilde, all of the
statistics for all of the variables are listed in a single row. A more familiar
form would have the variables listed in a column, once again achieved by
reversing the roles of the variables in the formula:

> cast(mstates,variable~.,c(mean,median,sd),
+ subset=variable %in% c(’Population’,’Life.Exp’))

variable mean median sd
1 Population 4246.4200 2838.500 4464.491433
2 Life.Exp 70.8786 70.675 1.342394

To aggregate using a grouping variable, the period in the formula can be
replaced by the grouping variable, in this case region:

> cast(mstates,region~variable,c(mean,median,sd),
+ subset=variable %in% c(’Population’,’Life.Exp’))

region Population_mean Population_median Population_sd
1 Northeast 5495.111 3100.0 6079.565
2 South 4208.125 3710.5 2779.508
3 North Central 4803.000 4255.0 3702.828
4 West 2915.308 1144.0 5578.607
Life.Exp_mean Life.Exp_median Life.Exp_sd



8.6 The reshape Package 123

1 71.26444 71.23 0.7438769
2 69.70625 70.07 1.0221994
3 71.76667 72.28 1.0367285
4 71.23462 71.71 1.3519715

If the roles of region and variable were reversed, there would be one variable
for each combination of region and mean, median, and sd, which might not
be convenient for display or further manipulation. To provide added flexibility,
the vertical bar (|) can be used to cause cast to produce a list instead of a
data frame. To create a list with a separate data summary for each region, we
can specify region after the vertical bar, and replace it with a period in the
formula:

> cast(mstates,variable~.|region,
+ c(mean,median,sd),
+ subset=variable%in%c(’Population’,’Life.Exp’))
$Northeast

variable mean median sd
1 Population 5495.11111 3100.00 6079.5651457
2 Life.Exp 71.26444 71.23 0.7438769

$South
variable mean median sd

1 Population 4208.12500 3710.50 2779.508251
2 Life.Exp 69.70625 70.07 1.022199

$‘North Central‘
variable mean median sd

1 Population 4803.00000 4255.00 3702.827593
2 Life.Exp 71.76667 72.28 1.036729

$West
variable mean median sd

1 Population 2915.30769 1144.00 5578.607015
2 Life.Exp 71.23462 71.71 1.351971

Note that this creates a separate list element for each region, and that the
contents of these elements are similar to those created with the formula
“variable ~ .” in a previous example.

The principles in the previous example extend readily to the case with more
than one id variable. Consider once again the ChickWeight data frame. The
variables in this dataset are weight, Time, Chick, and Diet. The last three
variables represent id variables, with weight being the only measure variable.
Since Time is stored as a numeric variable, it is necessary to explicitly provide
either the id or measure variables to the melt function:

> mChick = melt(ChickWeight,measure.var=’weight’)



124 8 Data Aggregation

To create a data frame with the median value of weight for each level of Diet
and Time, the following call to cast can be used:

> head(cast(mChick,Diet + Time ~ variable,median))
Diet Time weight

1 1 0 41
2 1 2 49
3 1 4 56
4 1 6 67
5 1 8 79
6 1 10 93

Notice that the variable specified last on the left-hand side (Time) is the one
that varies the fastest.

To create a separate column for the median at each time, Time can be
moved to the right-hand side of the formula:

> cast(mChick,Diet ~ Time + variable,mean)
Diet 0_weight 2_weight 4_weight 6_weight 8_weight

1 1 41.4 47.25 56.47368 66.78947 79.68421
2 2 40.7 49.40 59.80000 75.40000 91.70000
3 3 40.8 50.40 62.20000 77.90000 98.40000
4 4 41.0 51.80 64.50000 83.90000 105.60000
10_weight 12_weight 14_weight 16_weight 18_weight 20_weight

1 93.05263 108.5263 123.3889 144.6471 158.9412 170.4118
2 108.50000 131.3000 141.9000 164.7000 187.7000 205.6000
3 117.10000 144.4000 164.5000 197.4000 233.1000 258.9000
4 126.00000 151.4000 161.8000 182.0000 202.9000 233.8889
21_weight

1 177.7500
2 214.7000
3 270.3000
4 238.5556

To create a list, with one element for each Diet, and the median of weight
for each Time, use the vertical bar as follows:

> cast(mChick,Time ~ variable|Diet,mean)
$‘1‘

Time weight
1 0 41.40000
2 2 47.25000
3 4 56.47368
4 6 66.78947
5 8 79.68421
6 10 93.05263

. . .



8.6 The reshape Package 125

$‘4‘
Time weight

1 0 41.0000
2 2 51.8000
3 4 64.5000
4 6 83.9000
5 8 105.6000
6 10 126.0000

. . .

In the previous example there were valid values for each combination of
the id variables. If this is not the case, the default behavior of cast is to only
include combinations actually encountered in the data. To include all possible
combinations, use the add.missing=TRUE argument. For example, suppose we
remove one combination of Diet and Time from ChickWeight:

> xChickWeight = subset(ChickWeight,
+ !(Diet == 1 & Time == 4))
> mxChick = melt(xChickWeight,measure.var=’weight’)
> head(cast(mxChick,Diet + Time ~ variable,median))
Diet Time weight

1 1 0 41
2 1 2 49
3 1 6 67
4 1 8 79
5 1 10 93
6 1 12 106

By using add.missing=TRUE, observations for the missing combinations will
be created, with a missing value for the analysis variable:

> head(cast(mxChick,Diet + Time ~ variable,median,
+ add.missing=TRUE))
Diet Time weight

1 1 0 41
2 1 2 49
3 1 4 NA
4 1 6 67
5 1 8 79
6 1 10 93

In each of the preceding examples, the dataset was first melted, then
repeated calls to cast were carried out. If only a single call to cast is needed,
the recast function combines the melt and cast steps into a single call:

> head(recast(xChickWeight,measure.var=’weight’,



126 8 Data Aggregation

+ Diet + Time ~ variable,median,
+ add.missing=TRUE))
Diet Time weight

1 1 0 41
2 1 2 49
3 1 4 NA
4 1 6 67
5 1 8 79
6 1 10 93

8.7 Loops in R

In previous sections, the apply family of functions (and associated wrappers)
has been presented as the first choice for most repetitive tasks, such as operat-
ing on each element of a list, or performing a computation for nonoverlapping
subgroups of the data. The major factor in this decision has to do with the
simplicity of the functions, as well as their ability to properly use any names
which have been assigned to their input arguments. But this way of program-
ming may be awkward and unfamiliar, and many people would like to leverage
their knowledge of other programming languages into R by using more familiar
programming constructs like loops. An examination of some of the apply-style
functions’ source code will show that these functions internally use loops to
actually get their work done, so arguments against loops based solely on ef-
ficiency do not carry much weight. The real problem with loops is that there
are some very intuitive operations that may be implemented with loops that
turn out to be extremely inefficient in R. In this and the following sections,
we’ll access the efficiency of different approaches to common problems with
the use of the system.time function. This function accepts any valid R ex-
pression, and returns a vector of length five, containing the user CPU time,
the system CPU time, the elapsed time, and the user and system times from
any subprocesses. The first value shown, user CPU, is usually the most useful
measure of efficiency, and will vary less than the other values when the same
task is repeated several times. Since the argument handling in functions uses
equal signs to identify keywords, the one restriction when using system.time
is that assignment statements which are to be timed must use the “gets” form
of the assignment operator, namely, <- instead of the equal sign.

Before looking at the cases to avoid, let’s consider a simple example: finding
the mean of each column of a matrix. This problem is so common that the
rowMeans function is provided for an extremely efficient solution:

> dat = matrix(rnorm(1000000),10000,100)
> system.time(mns <- rowMeans(dat))
[1] 0.008 0.000 0.010 0.000 0.000

Another solution is to use apply:



8.7 Loops in R 127

> system.time(mns <- apply(dat,2,mean))
[1] 0.032 0.020 0.056 0.000 0.000

Next, we can use a loop to calculate the mean of each column separately.
Notice that in this case, we need to initialize the result vector mns to accom-
modate the answer:

> system.time({m <- ncol(dat)
+ for(i in 1:m)mns[i] <- mean(dat[,i])})
[1] 0.032 0.004 0.036 0.000 0.000

There really isn’t that much of a difference in execution time (the loop uses
slightly less system time). The main advantage of apply in this case is that it
eliminates the need to worry about the result vector, and, if the matrix were
named, those names would be passed on to the result.

Keep in mind that the previous example still took advantage of vectoriza-
tion: each column mean was calculated from a single call to mean. It is almost
always a mistake to loop over each element of a matrix. Consider the following
function, which calculates the mean of each column of the matrix by adding
together every element and then dividing by the column length:

> slowmean = function(dat){
+ n = dim(dat)[1]
+ m = dim(dat)[2]
+ mns = numeric(m)
+ for(i in 1:n){
+ sum = 0;
+ for(j in 1:m)sum = sum + dat[j]
+ mns[i] = sum / n
+ }
+ return(mns)
+}
> system.time(mns <- slowmean(dat))
[1] 2.100 0.000 2.097 0.000 0.000

Without any vectorization, the computation is much slower than the other
solutions. This illustrates that unless some kind of vectorization is used, com-
putations in R will be very slow.

Before leaving this problem, it should be mentioned that, for any given
problem, there may be unique solutions available. For example, the mean of
each column of a matrix can be calculated directly using matrix expressions
as follows:

> system.time({m = dim(dat)[1];mns = rep(1,m) %*% dat / m})
[1] 0.020 0.000 0.021 0.000 0.000

This represents an improvement over the apply and loop-based solutions, but
is still not as efficient as the colMeans solution.



128 8 Data Aggregation

This illustrates that loops, in and of themselves, are not necessarily in-
efficient in R, but they should certainly take advantage of any vectorization
possible to keep them competitive with other techniques.

To understand the kinds of loops which cause problems in R, it’s worth-
while to recall how matrices are stored in R, namely, as a one-dimensional
vector, with the columns of the matrix “stacked” on top of each other. A very
common operation is to build up a matrix iteratively, by starting with an
empty matrix, and using the rbind function to grow the matrix one row at a
time. There are two problems with this approach. First, the size of the matrix
changes at each iteration, requiring additional time to be spent in memory
allocations. More importantly, since adding a row changes the size of each
column in the matrix, all of the matrix elements need to be rearranged in
memory each time a new row is added. These repeated memory allocations
and rearrangements very quickly take their toll on the efficiency of a program.

Consider the trivial task of creating a matrix, each of whose rows represent
the numbers from 1 to 100. Because of recycling rules, this can be achieved
as follows:

> system.time(m <- matrix(1:100,10000,100,byrow=TRUE))
[1] 0.022 0.003 0.025 0.000 0.000

Performing the same operation by incrementally building the matrix is much
slower:

> buildrow = function(){
+ res = NULL
+ for(i in 1:10000)res = rbind(res,1:100)
+ res
+ }
> system.time(buildrow())
[1] 239.236 21.446 260.707 0.000 0.000

Two forces are slowing the computation: first, the size of res is changing each
time a new row is added to the matrix, causing R to reallocate memory at each
iteration. In addition, since R stores its matrices internally by columns, the
addition of a row to the matrix means that every column in the matrix needs
to be extended, resulting in large amounts of data being moved around in
memory. By this reasoning, it would be faster to build the matrix by columns
of equal size, since less rearrangement of the data will be necessary:

> buildcol = function(){
+ res = NULL
+ for(i in 1:10000)res = cbind(res,1:100)
+ t(res)
+ }
> system.time(buildcol())
[1] 142.666 20.596 163.289 0.000 0.000



8.7 Loops in R 129

While this does represent a speedup, it is still far from an optimal solution.
What makes the first technique so fast is that when the matrix function is
used, the size of the result can be determined before the data is generated.
We can provide the same advantage to a loop-based solution as follows:

> buildrow1 = function(){
+ res = matrix(0,10000,100)
+ for(i in 1:10000)res[i,] = 1:100
+ res
+ }
> system.time(buildrow1())
[1] 0.242 0.015 0.257 0.000 0.000

Even if we didn’t know how many rows the matrix would contain, it would still
be faster to allocate more rows than we need, and then truncate the matrix
at the end. For example, let’s include only 50% of the rows by checking the
value of a random number before adding that row to the output matrix. First,
we’ll start with a NULL matrix:

> somerow1 = function(){
+ res = NULL
+ for(i in 1:10000)if(runif(1) < .5)res = rbind(res,1:100)
+ res
+ }
> system.time(somerow1())
[1] 51.007 6.062 57.125 0.000 0.000

Next, we’ll allocate a matrix large enough to hold all the rows, then truncate
it at the end:

> somerow2 = function(){
+ res = matrix(0,10000,100)
+ k = 0
+ for(i in 1:10000)if(runif(1) < .5){
+ k = k + 1
+ res[k,] = 1:100
+ }
+ res[1:k,]
+ }
> system.time(somerow2())
[1] 0.376 0.027 0.404 0.000 0.000

Provided there is enough memory for the initial allocation, creating a suffi-
ciently large matrix before beginning to build it will generally be much faster
than repeatedly calling rbind.

If a situation arises where it is difficult or impossible to allocate an ap-
propriate matrix before building the rows, we can take advantage of the fact
that lists in R are stored very differently than matrices. In particular, the



130 8 Data Aggregation

memory used by list elements does not have to be contiguous, which means
that adding elements to a list doesn’t require as much manipulation of data
within memory as the corresponding operation on a matrix. The strategy is
to build a list of the rows that will eventually become the matrix, and then
use do.call to pass all of the rows to rbind in a single operation:

> somerow3 = function(){
+ res = list()
+ for(i in 1:10000)if(runif(1) < .5)res = c(res,list(1:100))
+ do.call(rbind,res)
+ }
> system.time(somerow3())
[1] 33.308 0.247 33.575 0.000 0.000

While nowhere near as fast as more optimal methods, this technique may prove
useful in those situations where the size of the final result may be difficult to
determine.




